Exercise Sheet 7

Discussed on 09.06.2021

Problem 1. Let k be a field.

- (a) Assume that k contains a primitive 4-th root of unity $i \in k$. Pick any $a \in k^{\times}$ and let E be the elliptic curve over k defined by the Weierstraß equation $y^2 = x^3 + ax$. By considering the automorphism $x \mapsto -x$, $y \mapsto iy$ of E, show that E admits complex multiplication by $\mathbb{Z}[i]$.
- (b) Assume that k contains a primitive 3-rd root of unity $\omega \in k$. For any $b \in k^{\times}$, let E be the elliptic curve over k defined by the Weierstraß equation $y^2 = x^3 + b$. Show that E admits complex multiplication by $\mathbb{Z}[\omega]$.

Problem 2. Let k be a field of characteristic p > 0 and let E be an elliptic curve over k which admits complex multiplication by \mathcal{O}_K , where \mathcal{O}_K is the ring of integers in some quadratic extension K of \mathbb{Q} .

- (a) If p does not split in K, then E is supersingular. Hint: Consider the induced action of \mathcal{O}_K on T_pE (defined in problem 2 on sheet 6).
- (b) If p splits in K then E is ordinary.

Hint: Show first that E[p] splits as a product of two group schemes over k, then look at the Lie algebras to deduce that one of them must be étale.

Problem 3. Let k be a field and let E be an elliptic curve over k.

- (a) Let \mathcal{L} be a line bundle on E, let $x \in E(k)$ and let $t_x \colon E \to E$ denote the translation-by-x map. Then $t_x^* \mathcal{L} \otimes \mathcal{L}^{-1}$ is a line bundle of degree 0 on E and hence defines a point in $E^{\vee}(k)$. Use this idea to define a morphism $\varphi_{\mathcal{L}} \colon E \to E^{\vee}$ of elliptic curves over k.
- (b) Show that the map $\varphi_{\mathcal{L}}$ defined in (a) is linear in \mathcal{L} and hence defines a group homomorphism $\varphi \colon \operatorname{Pic}(E) \to \operatorname{Hom}(E, E^{\vee}).$
- (c) Show that $\varphi_{\mathcal{L}}$ depends only on the degree of \mathcal{L} , i.e. that φ factors over deg: $\operatorname{Pic}(E) \to \mathbb{Z}$. *Hint*: Use the ideas from the end of lecture 12.
- (d) Give an example of an elliptic curve E and a homomorphism $E \to E^{\vee}$ not of the form $\varphi_{\mathcal{L}}$.