Exercise Sheet 7

Discussed on 09.06.2021

Problem 1. Let k be a field.
(a) Assume that k contains a primitive 4 -th root of unity $i \in k$. Pick any $a \in k^{\times}$and let E be the elliptic curve over k defined by the Weierstraß equation $y^{2}=x^{3}+a x$. By considering the automorphism $x \mapsto-x, y \mapsto i y$ of E, show that E admits complex multiplication by $\mathbb{Z}[i]$.
(b) Assume that k contains a primitive 3 -rd root of unity $\omega \in k$. For any $b \in k^{\times}$, let E be the elliptic curve over k defined by the Weierstraß equation $y^{2}=x^{3}+b$. Show that E admits complex multiplication by $\mathbb{Z}[\omega]$.

Problem 2. Let k be a field of characteristic $p>0$ and let E be an elliptic curve over k which admits complex multiplication by \mathcal{O}_{K}, where \mathcal{O}_{K} is the ring of integers in some quadratic extension K of \mathbb{Q}.
(a) If p does not split in K, then E is supersingular.

Hint: Consider the induced action of \mathcal{O}_{K} on $T_{p} E$ (defined in problem 2 on sheet 6).
(b) If p splits in K then E is ordinary.

Hint: Show first that $E[p]$ splits as a product of two group schemes over k, then look at the Lie algebras to deduce that one of them must be étale.

Problem 3. Let k be a field and let E be an elliptic curve over k.
(a) Let \mathcal{L} be a line bundle on E, let $x \in E(k)$ and let $t_{x}: E \rightarrow E$ denote the translation-by- x map. Then $t_{x}^{*} \mathcal{L} \otimes \mathcal{L}^{-1}$ is a line bundle of degree 0 on E and hence defines a point in $E^{\vee}(k)$. Use this idea to define a morphism $\varphi_{\mathcal{L}}: E \rightarrow E^{\vee}$ of elliptic curves over k.
(b) Show that the map $\varphi_{\mathcal{L}}$ defined in (a) is linear in \mathcal{L} and hence defines a group homomorphism $\varphi: \operatorname{Pic}(E) \rightarrow \operatorname{Hom}\left(E, E^{\vee}\right)$.
(c) Show that $\varphi_{\mathcal{L}}$ depends only on the degree of \mathcal{L}, i.e. that φ factors over $\operatorname{deg}: \operatorname{Pic}(E) \rightarrow \mathbb{Z}$.

Hint: Use the ideas from the end of lecture 12.
(d) Give an example of an elliptic curve E and a homomorphism $E \rightarrow E^{\vee}$ not of the form $\varphi_{\mathcal{L}}$.

